Studio Ousia at the NTCIR-15 SHINRA2020-ML Task

Sosuke Nishikawa, Ikuya Yamada

Abstract

We solve the task as multi-class text classification based on text-based feature and entity-based features extracted from Wikipedia descriptions.

Materials \& Methods

Extract text-based feature and entity-based features from an entity and its description obtained from Wikipedia.

Text-based feature

Feed entity descriptions into XLM-RoBERTa [1] Fig. 1: Our model architecture
\rightarrow Use the output embedding corresponding
to the [CLS] input token.

Entity-based features

Convert entities to following embeddings:
1: Wikipedia2Vec [2]
2: TransE model embedding
(PyTorch-BigGraph [3])
\rightarrow Use element-wise average
of these embeddings.

\rightarrow Concatenate these features and pass them to a hidden layer and an output layer with softmax function.

Heuristic Approach

Several entity pairs frequently co-occur
\rightarrow If our model predicts an entity type contained in one of the extracted pairs, we add the other type to the prediction.

Data augmentation

Use annotated Japanese Wikipedia data as extra training data.

Table 1: The top 10 frequent label pairs

label pairs		
Ship	Weapon	num
Archaeological_Place_Othe	Castle	1428
Company	Channel	1200
Line_Other	Car	1123
Shopping_Complex	Car_Stop	1080
Aircraft	Weapon	1034
Vehicle_Other	Weapon	586
Water_Route	Ship	410
Organization_Other	Channel	399
Company	Product_Other	353

[1] Conneau et al. Unsupervised Cross-lingual Representation Learning at Scale In ACL, 2020
[2] https://wikipedia2vec.github.io/wikipedia2vec/
[3] https://github.com/facebookresearch/PyTorch-BigGraph

