Data Augmentation with Unsupervised Machine Translation Improves the Structural Similarity of Cross-lingual Word Embeddings

> Sosuke Nishikawa, Ryokan Ri and Yoshimasa Tsuruoka The University of Tokyo, Japan

- Background & Motivation
- Proposed method
- > Experiments
- > Analysis
- > Conclusion

- Proposed method
- > Experiments
- > Analysis
- > Conclusion

Cross-lingual Word Embedding

Unsupervised Cross-lingual word embedding (CLWE) methods learn a semantic space shared between languages without any cross-lingual supervision

Isomorphism assumption:

"The two embeddings are structurally similar"

Limitation of Mapping Methods

Isomorphism assumption does not hold true when the two corpora are from different domains or the two languages are typologically very different [Søgaard et al., 2018]

needs for improving the structural similarity of the two word embeddings before mapping

Word embeddings trained using translated sentences have a similar structure to the word embedding space in the original language?

O-Unsupervised Machine Translation

Unsupervised machine translation (UMT) is a machine translation system which does not require any translation resources [Artetxe et al., 2018]

Learn word embeddings using translated sentences by UMT to improve structural similarity

- Background & Motivation
- Proposed method
- > Experiments
- > Analysis
- > Conclusion

Proposed method

- train UMT using the source/target training corpora and translate them
- learn word embeddings independently using machine-translated corpora (pseudo corpora)
- map them to a shared CLWE space

Translate
Unsupervised
MT
Train
Source Source Target Target
(Pseudo) (Pseudo)
Concat
γ Conour γ
Source Target
Embedding Embedding
Mapping
Mapped
CLWE

Our framework for training CLWEs

- Background & Motivation
- Proposed method
- > Experiments
- > Analysis
- > Conclusion

Experimental Settings

Evaluation task: Bilingual lexicon induction (BLI)

Language pairs: English-French, English-German, English-Japanese

Data: 10M sentences from Wikipedia dumps for each language

UMT system: Phrase-based statistical UMT [Lample et al., 2018]

Word embedding method: fastText [Bojanowski et al., 2017]

Word mapping method: VecMap [Artetxe et al., 2018]

- CLWE using training corpora only (Mapping)
- BLI using a phrase table built with synthetic parallel corpora from UMT (BLI from phrase table) [Artetxe et al., 2019]
- > CLWE trained using a bilingual skip-gram algorithm with a synthetic parallel corpus

from UMT (Joint-training) [Marie and Fujita, 2019]

BLI results in En-Fr CLWE

Mapping (+pseudo) clearly outperformed other alternative approaches

Evaluate our method in four downstream tasks

Mapping (+pseudo) consistently outperformed baseline mapping mehod

Why did this method work well?

- Background & Motivation
- Proposed method
- > Experiments

- Analysis
- > Conclusion

Why did this method work?

It is not simply because of data augmentation but because:

- It bridges the domain gap between texts in two languages
- It mitigates linguistic differences between texts in two languages

Why did this method work?

It is not simply because of data augmentation but because:

- > It bridges the domain gap between texts in two languages
- It mitigates linguistic differences between texts in two languages

❤── Bridging domain gap

Compare the extensions with a non-parallel pseudo, parallel pseudo and training data

BLI results in En-Fr CLWE

Extension by parallel-pseudo corpora yielded the best BLI score

Parallel-pseudo corpus makes the domains similar, and thus improves cross-lingual mapping

Why did this method work?

It is not simply because of data augmentation but because:

- > It bridges the domain gap between texts in two languages
- It mitigates linguistic differences between texts in two languages

Compare with pseudo corpora from non-target languages

BLI results in En-Fr CLWE

Extension from the corresponding language (i.e. Fr) corpora specifically improved the BLI score

The pseudo corpus makes documents linguistically similar, and thus improves cross-lingual mapping

- Background & Motivation
- Proposed method
- > Experiments
- > Analysis

Conclusion

- Proposed a method to learn word embeddings using translated sentences from UMT to improve the mapping for CLWEs.
- The proposed method outperformed the existing methods in the BLI task and Downstream tasks.
- The proposed method works by bridging the domain gap and mitigating linguistic differences between languages.

Thank you for listening